Flat Bundles on Affine Manifolds
نویسندگان
چکیده
We review some recent results in the theory of affine manifolds and bundles on them. Donaldson–Uhlenbeck–Yau type correspondences for flat vector bundles and principal bundles are shown. We also consider flat Higgs bundles and flat pairs on affine manifolds. A bijective correspondence between polystable flat Higgs bundles and solutions of the Yang–Mills–Higgs equation in the context of affine manifolds is shown. Also shown, in the context of affine manifolds, is a bijective correspondence between polystable flat pairs and solutions of the vortex equation.
منابع مشابه
Hermitian–Einstein connections on principal bundles over flat affine manifolds
Let M be a compact connected special flat affine manifold without boundary equipped with a Gauduchon metric g and a covariant constant volume form. Let G be either a connected reductive complex linear algebraic group or the real locus of a split real form of a complex reductive group. We prove that a flat principal G–bundle EG over M admits a Hermitian–Einstein structure if and only if EG is po...
متن کاملComplete affine manifolds: a survey
An affinely flat manifold (or just affine manifold) is a manifold with a distinguished coordinate atlas with locally affine coordinate changes. Equivalently M is a manifold equipped with an affine connection with vanishing curvature and torsion. A complete affine manifold M is a quotient E/Γ where Γ ⊂ Aff(E) is a discrete group of affine transformations acting properly on E. This is equivalent ...
متن کاملPrehomogeneous Affine Representations and Flat Pseudo-Riemannian Manifolds
The theory of flat Pseudo-Riemannian manifolds and flat affine manifolds is closely connected to the topic of prehomogeneous affine representations of Lie groups. In this article, we exhibit several aspects of this correspondence. At the heart of our presentation is a development of the theory of characteristic classes and characters of prehomogeneous affine representations. We give application...
متن کاملVector bundles on contractible smooth schemes
We discuss algebraic vector bundles on smooth k-schemes X contractible from the standpoint of A-homotopy theory; when k = C, the smooth manifolds X(C) are contractible as topological spaces. The integral algebraic K-theory and integral motivic cohomology of such schemes are that of Spec k. One might hope that furthermore, and in analogy with the classification of topological vector bundles on m...
متن کاملClassification of Real Bott Manifolds
A real Bott manifold is the total space of a sequence of RP 1 bundles starting with a point, where each RP 1 bundle is the projectivization of a Whitney sum of two real line bundles. A real Bott manifold is a real toric manifold which admits a flat riemannian metric. An upper triangular (0, 1) matrix with zero diagonal entries uniquely determines such a sequence of RP 1 bundles but different ma...
متن کامل